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Abstract

This paper introduces a new algorithm for pair matching. The method

is called SBAM (Sparse Biproportionate Adjustment Matching) and can be

characterized as either cross-entropy minimizing or matrix balancing. The

method is demonstrated in the context of a new Danish microsimulation model.

1 Introduction

Dynamic microsimulation finds increasing use in demographic and socioeconomic fore-

casting. A big advantage of the microsimulation approach is that it makes it possible

to analyze family structure. In traditional population projections the goal is usually to

forecast the population by age, gender and a few other characteristics (such as origin

and/or geographical region). Introducing family structure into this approach is problem-

atic, mainly because the size of the model increases tremendously when forecasting the

population by family/household characteristics. These characteristics can alternatively be

analyzed in a microsimulation model without loosing control over the size of the model.

∗Financial support from the Knowledge Centre for Housing Economics, Realdania is gratefully acknowl-
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Modelling family structure demands some extra features compared to the traditional

approach. To get the family composition right, two things are necessesary: Parity1 must

included in the fertility determination, and pair matching must be modelled. This paper

deals with the latter subject and introduces a new algorithm for pair matching.

Usually two distinct methodologies are mentioned when it comes to matching: the stable

marriage approach (previously used in the CORSIM and DYNACANE models) and the

stochastic approach (used in the DYNASIM model). The method decribed in this paper

cannot be categorized as either. The method is called SBAM (Sparse Biproportionate

Adjustment Matching) and can be characterized as either cross-entropy minimizing or

matrix balancing (defined below). The SBAM method is based on historical observations

of pair mathings from one or more years, distributed on a set of types (age, gender,

education, geographical region ect.). In a forecasted year, it is assumed that a matching

pool of individuals has been formed. If the individuals in this pool are distributed on types

as in the historical data, the matching problem is easy to solve: We simply distribute the

pairs as in the historical data. If this is not the case (which it typically is not), the pairs

must be distributed in a new way. A criteria could be to distribute the pairs such that

the distribution deviates as little as possible from the historical distribution. This can be

interpreted as a so-called matrix balancing problem (Schneider & Zenios, 1990): Change

the original data (defined as a matrix) such that the row and column sums are given

by predefined values. A number of solutions exist to this kind of problem. One such

solution is called biproportionate adjustment (or RAS adjustment). This method has two

advantageous properties: It is relatively easy to implement, and it has a nice interpretation.

Using biproportionate adjustment, the outcome can be interpreted as the result of a so-

called cross-entropy minimization problem (McDougall, 1999). The matching changes the

distribution of pairs relative to the original distribution, so that the information loss is

as small as possible. The information loss is defined by Shannon’s Information Theory

1The number of children a woman already has.
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(Shannon, 1948).

Section 2 decribes the methodology of the matching method. Section 3 shows an appli-

cation of SBAM in a new Danish microsimulation model.

2 Methodology

There are assumed to be N individuals to be matched into pairs2. The individuals are

divided into T types:

N =
T∑

j=1

Nj

A type could for example be defined on the basis of gender, age, origin and education.

The number T can therefore be expected to be rather large3.

The aim is to find real numbers xi,j (i = 1, ..., T, j = 1, ..., T ) such that

T∑
j=1

xit = Nt, t = 1, ..., T (1)

and

xij = xji, i = 1, ..., T, j = 1, ..., T (2)

The matching is defined by (1). The variable xij indicates the number of individuals of

type i that are paired with an individual of type j. If an individual of type i is paired with

a person of type j, then the opposite is also the case: An individual of type j is paired

with a person of type i. This gives rise to the symmetry assumption (2).

2N is assumed to be an even number.
3As an example, assume the types are defined on the basis of 2 genders, 50 ages (15-65), 5 education

levels and 11 geographical regions. Then T = 2 ∗ 50 ∗ 5 ∗ 11 = 5.500
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2.1 Data

The algorithm is based on data from actual matchings. Let x0ij be the number of individuals

of type i that according to data is matched with an individual of type j. As mentioned

above, the data set x0ij is symmetric. This is ensured in the following way: When a pair

of type (i, j) is added to data, it is done by following the procedure:

x0ij =: x0ij + 1

x0ji =: x0ji + 1

where =: is an algorithmic equal sign4. In the data set, individuals are distributed on T

types:

N0
t =

T∑
i=1

x0it =
T∑

j=1

x0tj (3)

and the total number of individuals is given by

N0 =
T∑

j=1

N0
j

It is advantageous to describe the problem in matrix notation. The data set x0ij can be

described as a T × T matrix, X0. Define the vector

~N0 =
(
N0

1 , ..., N
0
T

)

According to (3), both the row and column sums of X0 should be given by ~N0.

2.2 Biproportionate Adjustment

We are going to match N individuals, distributed on types according to ~N = (N1, ..., NT ).

We wish to find a T × T dimensional symmetric matrix X such that its row and column

4x =: x + a means that x is increased with the value a.
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sums add to ~N . This should be done so that X deviates as little as possible from the

original data X0. In other words, we would like our matching X to reflect as much as

possible of the matching information in the original (real world) matching X0. This can

be interpreted as a classical matrix balancing problem: Given a rectangular matrix A,

determine a matrix X that is close to A and satisfies a given set of linear restrictions on

its entities (Schneider & Zenios, 1990).

Algorithms for matrix balancing can be separated into two broad classes: scaling algo-

rithms and optimization algorithms. Scaling algorithms multiply the rows and columns of

the original matrix by positive constants until the matrix is balanced. Optimization algo-

rithms minimize a penalty function that measures the deviation of a candidate balanced

matrix from the original matrix. The balance conditions are constraints in the optimiza-

tion model, so that the optimal solution is the balanced matrix closest to the original

matrix.

We are going to use the scaling approach here. According to the biproportionate adjust-

ment model (also called RAS adjustment), the balancing problem can be solved in the

following iterative way: Start with the original matrix. Scale the rows such that the row

sums are correct. Then scale the columns such that the column sums are correct. Repeat

these two operations until a new stable matrix has emerged.

When using the optimization algorithms, it is obvious that the new matrix deviates as

little as possible from the original matrix (that is part of the definition of the problem).

This is less obvious when it comes to the scaling algorithms. In fact, it can be demonstrated

that the biproportionate model is an entropy-theoretic model (McDougall, 1999). The

new matrix can be characterized as the solution to a cross-entropy minimization model.

Entropy should here be understood in an information theoretical context (Shannon, 1948).

By using the biproportionate model we are actually minimizing the loss of information

when changing from the type distribution ~N0 to ~N .
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2.3 Sparse algorithm

As mentioned above, the number of types T can be very large. Therefore, a T ×T matrix

can easily become so large that it gives rise to computational problems. As there at the

same time often will be many zeros in the X0 matrix, it will have obvious advantages to

introduce a sparse matrix method. The method is implemented in C# and is based on so-

called linked lists5. A T×T matrix can be represented by a SBAMMatrix. A SBAMMatrix

is a C# object that essentially contains 2T linked lists: T linked lists for the rows and T

linked lists for the columns. Each element in the linked list contains a pointer to data and

a reference to the next element in the list. In this way, data is actually represented twice:

as rows and as columns. The reason for this redundancy is that it makes biproportionate

scaling much easier.

3 An application

The SBAM method has been used in the development of a new Danish microsimulation

model. The purpose of the model is to forecast the evolution and composition of Danish

households and their demand for housing. The model works with a full sample of the

Danish population of approximately 5,5 million individuals and 2,5 million households

divided into 11 (geographical?) regions. The model describes demography, education,

socio-economic status and housing choice.

Each individual will in every period (every year) with a given probability be included

in the so-called matching pool. This probability depends on the characteristics of the

individual. For example, a young person that is single, will have a high probability, while

an older person living in a relationship, will have a lower probability.

In this way, a matching pool containing approximately 120,000 individuals arises each

5A linked list is a data structure consisting of a group of nodes that together represent a sequence. Each
node is composed of data and a reference (a link) to the next node in the sequence. This structure is
memory space saving and allows for efficient insertion or removal of elements from any position in the
sequence.

6



period. From this, the corresponding 60,000 pairs are formed. The SBAM algorithm is

used for this. In the experiments reported in this paper, the individuals are divided into

types on the basis of gender, age (15-65), 5 education levels and 11 regions. This results

in 5,500 different types (=2*50*5*11). On a Windows-server (Intel Xeon CPU X5550,

2.67GHz), the matching takes approximately 20 seconds.

Figures 1-3 give examples of the results of the model in 2020. The figures show the

distribution of newly formed pairs in the original data (from 2008) and in 2020. Figure 1

displays the age distribution of partners of 25-29 year old males. It is evident that SBAM

is capable of generating an age distribution fairly consistent with data. The mean age of

a partner is 25.0 in the data. In the forecast, the average is 25.4.

Figure 2 shows the educational distribution of partners for individuals with a vocational

education. The SBAM algorithm finds it necessary to move the distribution slightly to

ensure that the over-all matching is solved. In comparison to the original data, the pro-

portions of partners with educational levels of “High school” and “Vocational” have thus

fallen, while the proportions of “No education”, “Medium” and “Long” have risen.

Lastly, Figure 3 displays the regional distribution of partners for individuals living in

“Copenhagen, environs”. The Copenhagen area is divided into two regions: “Copenhagen,

environs” (7) and “Copenhagen, city” (6). It is seen that approximately 50 per cent of

new partners also live in the environs of Copenhagen. In addition, Copenhagen city and

North Sealand (8) account for a significant proportion of new partners. It is evident that

the SBAM method produces a distribution that is fairly consistent with the original data.
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Figure 1: Age distribution of partners. 25-29 year old males.
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Source: Own calculations.

Figure 2: Educational distribution of partners. Vocational (?).
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Source: Own calculations.
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Figure 3: Regional distribution of partners. Copenhagen, environs.
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Note: Copenhagen, city=6, Copenhagen, environs=7, North Sealand=8.

Source: Own calculations.
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